Всасывание в кровь химических веществ

Всасывание в кровь химических веществ

Всасывание в кровь химических веществ

Токсические вещества из внешней среды|среды поступают в циркулирующую кровь и лимфу. С их током они переносятся в интерстициальную (межклеточную) жидкость, а затем в клетки. Таким образом, распространение в организме поступивших ядов обеспечивается системой крово- и лимфообращения. Кроме кровообращения распределение ядов по отдельным органам|органам и тканям зависит от их связывания белками|белками плазмы и органов|органов, растворимости в липидах, степени ионизации и других факторов.

Всасывание лекарственных средств и ядов из пищевого канала, лёгких и других мест их поступления в организм происходит через систему клеточных мембран. Однако не всякое поступившее в кровь вещество может легко проникать в любую клетку. Свободному проникновению ядов в клетки препятствуют покрывающие их мембраны, пропускающие внутрь клеток питательные и некоторые другие вещества. Продукты обмена этих веществ мембраны пропускают из клеток наружу. Учитывая большую|большую роль клеточных мембран, изучению их структуры и функций уделяется большое внимание. Предложено несколько гипотез о структуре мембран. В настоящее время за основу принимается гипотеза элементарной мембраны, согласно которой мембрана состоит из белков и липидов. К липидам относятся жиры и воски (сложные эфиры жирных кислот с длинной углеродной цепью и высокомолекулярных одноатомных спиртов), нерастворимые в воде, но растворимые в органических растворителях. Молекулы мембранных липидов на одном конце содержат полярные группы (например,- СООН), обладающие гидрофильными свойствами, а на другом — длинные углеводородные цепи, обладающие гидрофобными свойствами. Согласно литературным данным, мембрана состоит из двойного слоя смешанных полярных липидов. В двойном слое липидов углеводородные цепи обращены внутрь и образуют непрерывную углеводородную фазу, а гидрофильные группы липидов направлены наружу. Каждая поверхность двойного слоя липидов покрыта мономолекулярным слоем белка|белка. На поверхности мембраны находятся олигосахариды, полимеры, различные моносахариды и др.

Белки|Белки и липиды, содержащиеся в клеточных мембранах, по своему составу могут быть различными. Для каждого типа мембран характерно определённое молярное соотношение специфических полярных липидов. В клеточных мембранах имеются ультрамикроскопические щели (поры|поры, каналы). Мембраны и образовавшиеся в них поры|поры могут иметь определённые электрические заряды. Известно несколько механизмов переноса лекарственных и ядовитых веществ через мембраны в клетки.

Первый тип мембран. Мембраны первого типа препятствуют прохождению ионов и пропускают нейтральные молекулы в зависимости от их липофильных свойств. Коэффициент распределения большинства малоионизированных соединений в системе масло — вода или хлороформ — вода хорошо соответствует скорости проникновения их через мембраны.

Через мебраны первого типа в клетки проникают вещества по законам диффузии. Переход вещества в клетку через мембрану происходит тогда, когда концентрация его в клетке меньше, чем концентрация этого вещества в окружающей клетку жидкости. Этот переход происходит до тех пор, пока концентрация вещества по обе стороны мембраны не достигнет равновесия.

Через мембраны первого типа переносятся в клетки липофильные вещества и малые молекулы неполярных соединений. Такими веществами являются: этиловый спирт, ацетон, фенол и его производные, бензол, толуол, нитробензол, ароматические амины, хлороформ, дихлорэтан, четыреххлористый углерод, синильная кислота, сероуглерод, газообразные соединения, содержащие хлор, серу, азот, фосфор, мышьяк и др.

Путём диффузии в клетки переносятся и вещества, имеющие более крупные молекулы (белки|белки и другие соединения). Они проникают в клетки через крупные поры|поры в мембранах или путём пиноцитоза. При пиноцитозе мембрана образует впячивание и как бы полностью обволакивает крупную молекулу, которая в виде пузырька переносится через мембрану внутрь клетки.

Мембраны второго типа. Для большинства полярных молекул и некоторых ионов клеточные мембраны непроницаемы. Однако некоторые из них проникают в клетки через клеточные мембраны в виде комплексов. Эти комплексы образуются при взаимодействии молекул соответствующих веществ с молекулами переносчика (транспортной системы), входящего в состав мембраны. Переносчиками могут быть ферменты, некоторые специфические белковые компоненты мембран и другие вещества. Образующиеся комплексы растворяются в мембранах и легко диффундируют через них в клетки. Проникнув в клетку, эти комплексы расщепляются и при этом освобождается полярное вещество. В частности, таким путём проникает глюкоза в эритроциты крови человека.

Мембраны третьего типа. Через эти мембраны осуществляется активный перенос, состоящий в том, что молекулы или ионы транспортируемого вещества переходят из среды|среды с меньшей концентрацией в среду|среду с большей концентрацией. При активном переносе молекула или ион вещества, которое должно проникнуть в клетку, лабильно соединяется с переносчиком подобно тому, как это происходит в мембранах второго типа. Однако здесь переносчик претерпевает химическое превращение, для осуществления которого требуется определённая энергия. В результате химической реакции по одну сторону мембраны переносчик видоизменяется и приобретает определённое сродство к веществу или иону, подлежащему переносу. Затем видоизменённый переносчик присоединяет к себе молекулы или ионы веществ, подлежащих переносу. Образовавшиеся при этом комплексы проходят через мембрану. Затем внутри клетки комплексы распадаются и освобождаются переносимые ими вещества или ионы, а переносчик переходит наружу через мембрану в свободном состоянии или в виде комплекса с другим веществом.

Всасывание в кровь химических веществ

Системы активного переноса характеризуются строгой специфичностью. Они переносят растворенное|растворённое вещество только в одном направлении (в клетку или из клетки). Рассмотрим процесс активного переноса на примере проникновения ионов калия Б эритроциты. Известно, что концентрация ионов калия внутри эритроцитов примерно в 35 раз выше, чем в плазме крови. Чтобы поддерживалась надлежащая концентрация ионов калия в эритроцитах, эти ионы должны переходить из плазмы в эритроциты (т. е. из среды|среды с меньшей концентрацией в среду|среду с большей концентрацией). Этот переход осуществляется только при определённой затрате энергии, источником которой может быть реакция гидролиза АТФ (аденозинтрифосфата). Под влиянием выделившейся энергии носитель претерпевает химические изменения и взаимодействует с ионами калия. Переход ионов калия в эритроциты приостанавливается тогда, когда поток ионов внутрь клетки будет уравновешен «утечкой» части ионов наружу через мембрану по механизму обычной диффузии.

Мембраны четвёртого типа. Мембраны этого типа отличаются от мембран предыдущих типов мозаическим строением. Они состоят из липидных цилиндров и белковых ячеек. Мембраны четвёртого типа имеют поры|поры, через которые свободно проникают молекулы воды|воды и анионы небольшого размера. Эти мембраны не пропускают катионы, поскольку в их порах|порах имеются положительно заряженные|заряжённые частицы, которые отталкивают катионы. В этих мембранах также имеются поры|поры, через которые проникают молекулы некоторых неэлектролитов. С увеличением размеров молекул неэлектролитов уменьшается способность пропускания их через поры|поры мембран четвёртого типа. Как указано выше, крупные молекулы неэлектролитов способны проникать в клетки через мембраны первого типа.

В гистогематических барьерах имеются мембраны всех перечисленных выше типов, в том числе и мембраны типа мозаики, для каждого участка которых характерен|характерен определённый механизм проницаемости.

Основными компонентами мембран являются структурные белки|белки и фосфолипиды, а специфика этих мембран зависит от наличия в них мукополисахаридов, липидов (холестерина, кардиолипина) и набора различных ферментов.

Действие токсических веществ, вступивших в контакт с клетками организма, проявляется при их взаимодействии с рецепторами.

Рецепторы. Химические вещества (фармацевтические препараты, яды), поступившие в организм, оказывают определённое действие только тогда, когда они вступают во взаимодействие с соответствующими, содержащимися в клетках, реакционно-способными структурами, которые называются рецепторами.

Рецепторами могут быть воспринимающие раздражения нервные окончания или специализированные нервные клетки, реагирующие на определённые изменения в окружающей среде. Изучены рецепторы, которые приспособлены к восприятию раздражений, поступающих из внешней среды|среды (рецепторы, воспринимающие болевые раздражения, холод, тепло, звуковые и световые колебания и др.). Эти рецепторы изучаются в курсах физиологии и других дисциплин. Ниже мы остановимся только на таких рецепторах, с помощью которых осуществляются реакции организма на действие химических веществ.

Токсическое действие ядовитых веществ зависит от наличия в биоорганических структурах рецепторов, представляющих собой группы атомов или молекул, способных взаимодействовать с ядовитыми веществами, поступившими в организм. Функции рецепторов могут выполнять сульфгидрильные, гидроксильные, карбоксильные, аминные и фосфорсодержащие группы белковых и других жизненно важных соединений в организме. Свойствами рецепторов также могут обладать некоторые аминокислоты|аминокислоты, нуклеиновые кислоты|кислоты, ферменты, витамины, гормоны и ряд других веществ.

В зависимости от химического строения и свойств ядовитых веществ и соответствующих им рецепторов прочность химической связи между ними может быть различной. Взаимодействие рецепторов с ядовитыми веществами может осуществляться за счёт образования ковалентных, ионных, иондипольных и водородных связей, а также за счёт сил Ван-дёр-Ваальса. Из этих связей наиболее прочными являются ковалентные. 

 

Видео по теме : Всасывание в кровь химических веществ

++++++++++++++++++++++++++++++++++++++++++++++++++


Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector