Клеточная мембрана

Клеточная мембрана

Клеточная мембрана

Всё|Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной. Однако функции мембраны не ограничиваются защитой органоидов и отделением одной клетки от другой. Клеточная мембрана представляет собой сложнейший механизм, напрямую участвующий в размножении, регенерации, питании, дыхании и многих других важных функциях клетки.

Термин «клеточная мембрана» используется уже около ста лет. Само слово «мембрана» в переводе с латыни означает «плёнка». Но в случае в клеточной мембраной правильнее будет говорить и совокупности двух плёнок, соединённых между собой определённым образом, причём, разные стороны|стороны этих плёнок обладают разными свойствами.

Клеточная мембрана (цитолемма, плазмалемма) – это трёхслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды|среды, и осуществляющая управляемый обмен между клетками и окружающей средой.

Решающее значение в этом определении имеет не то, что клеточная оболочка отделяет одну клетку от другой, а то, что она обеспечивает её взаимодействие другими клетками и окружающей средой. Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций. Из нашей статьи вы узнаете|узнаёте всё|все о составе, строении, свойствах и функциях клеточной мембраны, а также о той опасности, которую представляют для здоровья человека нарушения в работе клеточных мембран.

Содержание статьи:

  • История исследования клеточной мембраны
  • Свойства и функции клеточной мембраны
  • Строение клеточной мембраны
  • Важнейшие выводы о строении и функциях клеточных мембран
  • История исследования клеточной мембраны

  • В 1925 году двое немецких учёных, Гортер и Грендель, смогли провести сложнейший эксперимент над красными кровяными тельцами|тельцами человеческой крови, эритроцитами. С помощью осмотического удара исследователи получили так называемые «тени|тени»–  пустые оболочки эритроцитов, затем сложили их в одну стопку и измерили площадь поверхности. Следующим шагом стало вычисление количества липидов в клеточной мембране. С помощью ацетона учёные выделили липиды из «теней|теней» и определили, что их как раз хватает на двойной сплошной слой.

    Однако в ходе эксперимента было допущено две грубейших ошибки:

  • Использование ацетона не позволяет выделить из мембран абсолютно всё|все липиды;

  • Площадь поверхности «теней|теней» была высчитана по сухому весу, что тоже неправильно.

  • Поскольку первая ошибка давала минус в расчётах, а вторая – плюс, общий результат оказался на удивление точным, и немецкие учёные принесли в научный мир важнейшее открытие – липидный бислой клеточной мембраны.

    В 1935 году другая пара исследователей, Даниэлли и Доусон, после долгих экспериментов над билипидными плёнками пришли к выводу о присутствии в клеточных мембранах белков. Иначе никак нельзя было объяснить, почему эти плёнки обладают таким высоким показателем поверхностного натяжения. Учёные представили вниманию общественности схематическую модель клеточной мембраны, похожую на сэндвич, где роль кусочков хлеба|хлеба играют однородные липидно-белковые слои, а между ними вместо масла|масла – пустота.

    В 1950 году с помощью первого электронного микроскопа теорию Даниэлли-Доусона удалось частично подтвердить – на микрофотографиях клеточной мембраны были отчётливо видны два слоя, состоящих из липидных и белковых головок, а между ними прозрачное пространство, заполненное лишь хвостиками липидов и белков.

    В 1960 году, руководствуясь этими данными, американский микробиолог Дж. Робертсон разработал теорию о трёхслойном строении клеточных мембран, которая долгое время считалась единственно верной. Однако по мере развития науки рождалось всё больше сомнений относительно однородности этих слоёв. С точки зрения термодинамики такое строение крайне невыгодно – клеткам было бы очень сложно транспортировать вещества внутрь и наружу через весь «бутерброд». Кроме того, было доказано, что клеточные мембраны разных тканей имеют разную толщину и способ крепления, что обусловлено разными функциями органов|органов.

    В 1972 году микробиологи С.Д. Сингер и Г.Л. Николсон смогли объяснить всё|все нестыковки теории Робертсона с помощью новой, жидкостно-мозаичной модели клеточной мембраны. Учёные установили, что мембрана неоднородна, ассиметрична, наполнена жидкостью, и её клетки пребывают в постоянном движении. А белки|белки, входящие в её состав, имеют разное строение и назначение, кроме того, они по-разному располагаются относительно билипидного слоя мембраны.

    В составе клеточных мембран присутствуют белки|белки трёх видов:

  • Периферические – крепятся на поверхности плёнки;

  • Полуинтегральные – частично проникают внутрь билипидного слоя;

  • Интегральные – полностью пронизывают мембрану.

  • Периферические белки|белки связаны с головками мембранных липидов посредством электростатического взаимодействия, и они никогда не образуют сплошной слой, как принято было считать ранее.А полуинтегральные и интегральные белки|белки служат для транспортировки внутрь клетки кислорода и питательных веществ, а также для вывода из неё продуктов распада и ещё для нескольких важных функций, о которых вы узнаете|узнаёте далее.

    Подробнее: Биологические функции липидов

    Свойства и функции клеточной мембраны

    Клеточная мембрана выполняет следующие функции:

  • Барьерную – проницаемость мембраны для разных типов молекул неодинакова.Чтобы миновать оболочку клетки, молекула должна иметь определённый размер, химические свойства и электрический заряд. Вредные или неподходящие молекулы, благодаря барьерной функции клеточной мембраны, просто не могут проникнуть внутрь клетки. Например, с помощью реакции пероксиса мембрана защищает цитоплазму от опасных для неё пероксидов;

  • Транспортную – сквозь мембрану проходит пассивный, активный, регулируемый и избирательный обмен. Пассивный обмен подходит для жирорастворимых веществ и газов, состоящих из очень маленьких молекул. Такие вещества проникают внутрь и выходят из клетки без затрат энергии, свободно, методом диффузии. Активная транспортная функция клеточной мембраны задействуется тогда, когда в клетку или из неё нужно провести необходимые, но трудно транспортируемые вещества. Например, обладающие большим|большим размером молекул, или неспособные пересечь билипидный слой из-за гидрофобности. Тогда начинают работать белки|белки-насосы, в том числе АТФаза, которая отвечает за всасывание в клетку ионов калия и выбрасывание из неё ионов натрия. Регулируемый транспортный обмен необходим для осуществления функций секреции и ферментации, например, когда клетки производят и выделяют гормоны или желудочный сок. Всё|Все эти вещества выходят из клеток через специальные каналы и в заданном объёме. А избирательная транспортная функция связана с теми самыми интегральными белками|белками, которые пронизывают мембрану и служат каналом для входа и выхода строго определённых типов молекул;

  • Матричную – клеточная мембрана определяет и фиксирует расположение органоидов относительно друг друга (ядра|ядра, митохондрий, хлоропластов) и регулирует взаимодействие между ними;

  • Механическую – обеспечивает ограничение одной клетки от другой, и, в то же время,— правильное соединение клеток в однородную ткань и устойчивость органов|органов к деформации;

  • Защитную – как у растений, так и у животных, клеточная мембрана служит основой для построения защитного каркаса. Примером могут служить твёрдая древесина, плотная кожура, колючие шипы|шипы. В животном мире тоже много примеров защитной функции клеточных мембран – черепаший панцирь, хитиновая оболочка, копыта и рога|рога;

  • Энергетическую — процессы фотосинтеза и клеточного дыхания были бы невозможны без участия белков клеточной мембраны, ведь именно с помощью белковых каналов клетки обмениваются энергией;

  • Рецепторную— белки|белки, встроенные в клеточную мембрану, могут обладать ещё одной важной функцией. Они служат рецепторами, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. А это, в свою очередь, необходимо для проведения нервных импульсов и нормального течения гормональных процессов;

  • Ферментативную — ещё одна важная функция, присущая некоторым белкам|белкам клеточных мембран. Например, в эпителии кишечника с помощью таких белков синтезируются пищеварительные ферменты;

  • Биопотенциальную – концентрация ионов калия внутри клетки значительно выше, чем снаружи, а концентрация ионов натрия, наоборот, снаружи больше, чем внутри. Этим и объясняется разность потенциалов: внутри клетки заряд отрицательный, в снаружи положительный, что способствует движению веществ внутрь клетки и наружу при любом из трёх типов обмена – фагоцитозе, пиноцитозе и экзоцитозе;

  • Маркировочную – на поверхности клеточных мембран имеются так называемые «ярлыки» — антигены, состоящие из гликопротеинов (белков с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями). Поскольку боковые цепи могут иметь огромное множество конфигураций, каждый тип клеток получает свой уникальный ярлык, который позволяет другим клеткам организма узнавать их «в лицо» и правильно на них реагировать. Вот почему, например, иммунные клетки человека, макрофаги, без труда распознают|распознают чужака, проникшего в организм (инфекцию, вирус) и пытаются его уничтожить. То же самое происходит с больными, мутировавшими и старыми клетками – ярлык на их клеточной мембране меняется, и организм избавляется от них.


Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector